Chem-Is-Try.Org | Situs Kimia Indonesia | |
Alat Ukur Panjang, Massa dan Waktu Posted: 13 May 2011 06:02 AM PDT
Alat ukur besaran-besaran fisika sangat banyak tetapi di kelas X SMA ini dikenalkan tiga alat ukur besaran pokok yaitu panjang, massa dan waktu. Beberapa alat ukur besaran tersebut dapat dicermati seperti berikut. a. Alat ukur panjang Panjang, lebar atau tebal benda dapat diukur dengan mistar. Tetapi jika ukurannya kecil dan butuh ketelitian maka dapat digunakan alat lain yaitu jangka sorong dan mikrometer skrup. (1) Jangka sorong Sudah tahukah kalian dengan jangka sorong? Jangka sorong banyak digunakan dalam dunia mesin. Jika kalian menanyakan pada teknisi sepeda motor atau mobil maka dia akan langsung menunjukkannya. Perhatikan Gambar 1.9(a). Alat pada gambar itulah yang dinamakan jangka sorong. Jika kalian cermati maka jangka sorong tersebut memiliki dua bagian. Pertama, rahang tetap yang memuat skala utama. Kedua, rahang sorong (geser) yang memuat skala nonius. Alat ukur besaran-besaran fisika sangat banyaktetapi di kelas X SMA ini dikenalkan tiga alat ukur besaranpokok yaitu panjang, massa dan waktu. Beberapa alatukur besaran tersebut dapat dicermati seperti berikut.a. Alat ukur panjangPanjang, lebar atau tebal benda dapat diukur denganmistar. Tetapi jika ukurannya kecil dan butuh ketelitianmaka dapat digunakan alat lain yaitu jangka sorong danmikrometer skrup.(1) Jangka sorongSudah tahukah kalian dengan jangka sorong?Jangka sorong banyak digunakan dalam dunia mesin. Jikakalian menanyakan pada teknisi sepeda motor atau mobilmaka dia akan langsung menunjukkannya. PerhatikanGambar 1.9(a). Alat pada gambar itulah yang dinamakanjangka sorong. Jika kalian cermati maka jangka sorongtersebut memiliki dua bagian. Pertama, rahang tetapyang memuat skala utama. Kedua, rahang sorong (geser)yang memuat skala nonius. [gambar a dan b] Skala nonius merupakan skala yang menentukan ketelitian pengukuran. Skala ini dirancang dengan panjang 19 mm tetapi tetap 20 skala. Sehingga setiap skala nonius akan mengalami pengecilan sebesar (20-19) : 20 = 0,05 mm. Perhatikan perbandingan skala tersebut pada Gambar 1.9(b). Hasil pengukuran dengan jangka sorong akan memuat angka pasti dari skala utama dan angka taksiran dari skala nonius yang segaris dengan skala utama. Penjumlahan dari keduannya merupakan angka penting. Hasil pengukuran itu dapat dituliskan dengan persamaan sebagai berikut. x = (x0 + Δx . 0,05) mm …………………. (1.4) dengan : x = hasil pengukuran CONTOH 1.5 Diana mengukur diameter dalam tabung dapat menunjukkan keadaan pengukuran seperti pada Gambar 1.10. Berapakah diameter dalam tabung tersebut? Penyelesaian Dari Gambar 1.10 diperoleh: x0 = 23 mm Δx = 12 Berarti diameter dalam tabung sebesar: x = x0 + Δx . 0,05 = 23 + 12.0,05 = 23,60 mm [ gambar 1.10] (2) Mikrometer sekrup Coba kalian perhatikan Gambar 1.11! Alat yang terlihat pada gambar itulah yang dinamakan mikrometer sekrup. Mirip dengan jangka sorong, mikrometer juga memiliki dua bagian. Pertama, rahang tetap memuat skala utama. Kedua, rahang putar, memuat skala nonius. Mikrometer ini dapat digunakan untuk mengukur ketebalan benda-benda yang tipis seperti kertas dan rambut. Hal ini sesuai dengan sifat mikrometer yang memiliki ketelitian lebih besar dari jangka sorong. Mikrometer memiliki ketelitian hingga 0,01 mm. Ketelitian ini dirancang dari rahang putar yang memuat 50 skala x0 Δx rahang tetap rahang tetap [ gambar 1.11] Hasil pengukurannya juga memiliki angka pasti dan angka taksiran seperti jangka sorong. Rumusnya sebagai berikut. x = (x0 + Δx . 0,01) mm ……………….. (1.5) dengan : x = hasil pengukuran x0 = skala utama sebelum batas rahang putar Δx = skala nonius yang segaris dengan garis tengah skala utama CONTOH 1.6 Penunjukkan skala pada mikrometer sekrup yang digunakan untuk mengukur tebal kertas dapat dilihat seperti pada Gambar 1.12. Berapakah hasil pengukuran tersebut? Penyelesaian Dari Gambar 1.11 dapat diperoleh: x0 = 1 mm Δx = 6 Berarti hasil pengukurannya sebesar: x = x0 + Δx . 0,01 = 1 + 6 . 0,01 = 1,06 mm [ gambar 1.12] b. Alat ukur massa Kalian tentu sudah tidak asing lagi dengan pengukur massa. Setiap saat kalian perlu menimbang massa kalian untuk data tertentu. Alat pengukur itu dikenal dengan nama neraca. Namun beberapa neraca yang digunakan sering dinamakan timbangan. Pada Gambar 1.13 diperlihatkan berbagai jenis neraca ; neraca badan, neraca pegas, neraca O'hauss dan neraca analitis. Neraca badan memiliki skala terkecil 1 kg, neraca pegas 1 gr, neraca O'hauss 0,1 gr sedangkan neraca analitis hingga 1 mg. Neraca yang sering digunakan di laboratorium adalah neraca O'hauss. Hasil pengukuran dengan neraca sesuai dengan jumlah pembanding yang digunakan. Untuk memahaminya cermati contoh 1.7 berikut. [ gambar a dan b] CONTOH 1.7 Andi dan Johan sedang mengukur massa balok. Pembanding-pembanding yang digunakan dapat terlihat seperti pada Gambar 1.14(a). Berapakah massa balok tersebut? [ gambar 1.14] Penyelesaian Hasil pengukuran dengan neraca O'hauss adalah jumlah dari pembanding-pembanding yang digunakan, sehingga dari Gambar 1.14(a) dapat diperoleh: M = 1kg + 400 kg + 40 gr + 1gr = 1441 gr = 1,441 kg c. Alat ukur waktu Dalam setiap aktivitas, kita selalu menggunakan batasan waktu. Contohnya proses belajar mengajar fisika, waktunya 90 menit. Istirahat sekolah 30 menit. Batasan-batasan waktu ini biasanya digunakan jam biasa. Bagaimana jika batasan waktunya singkat (dalam detik) seperti mengukur periode ayunan? Untuk kejadian ini dapat digunakan pengukur waktu yang dapat dikendalikan yaitu stop watch. Perhatikan Gambar 1.15! Ada beberapa jenis stopwatch, ada yang manual dan ada yang digital. Hasil pembacaan stop watch digital dapat langsung terbaca nilainya. Untuk stop watch yang menggunakan jarum, maka pembacanya sesuai dengan penunjukkan jarum. untuk contoh 1.8 diperlihatkan stop watch yang memiliki dua jarum penunjuk. Jarum pendek untuk menit dan jarum panjang untuk detik. CONTOH 1.8 Tampilan stopwatch yang digunakan untuk mengukur waktu gerak benda dapat dilihat seperti Gambar 1.16. Berapakah waktu yang dibutuhkan? Penyelesaian Jarum pendek: 2 menit Jarum panjang: 34,5 detik (jarum pendek pada tanda hitam/merah berarti di atas 30 detik) Jadi waktu yang dibutuhkan memenuhi: t = 2 menit + 34,5 detik = 120 detik + 34,5 detik = 154,5 detik [ gambar 1.17] 4. Analisa Angka Penting Seperti penjelasan di depan, angka penting merupakan semua angka yang diperoleh dalam pengukuran. Namun setelah dituliskan kadang-kadang jumlah angka pentingnya jadi rancu. Contohnya panjang suatu benda terukur 3,2 cm. Nilai panjang ini dapat ditulis 0,032 m atau 320 mm. Dari penulisan ini timbul pertanyaan; berapakah jumlah angka penting panjang benda tersebut? Untuk mengatasi kerancuan tersebut maka kalian perlu memperhatikan hal-hal penting berikut. 1. Penulisan angka penting bertujuan untuk mengetahui ketelitian suatu pengukuran. Contohnya pengukuran panjang benda di atas. l = 3,2 cm. Hasil ini menunjukkan bahwa pengukuran ini teliti hingga 1 desimal untuk centimeter (0,1 cm) dan angka pentingnya berjumlah 2. Misalnya lagi suatu pengukuran yang memperoleh t = 2,50 s. Hasil ini menunjukkan bahwa ketelitian alatnya sampai dua desimal (0,01 s) sehingga perlu menuliskan nilai 0 di belakang angka 5. Berarti memiliki 3 angka penting. 2. Penulisan hasil pengukuran sebaiknya menggunakan notasi ilmiah. Bentuk notasi ilmiah seperti berikut. a × 10n ……………………………………… (1.6) dengan : 1 < a < 10 n = bilangan bulat Penulisan notasi ilmiah ini akan lebih bermanfaat lagi jika dilakukan perubahan satuan. Misalnya pengukuran panjang benda di atas l = 3,2 cm = 0,032 m. Perubahan satuan ini sebaiknya dalam bentuk l = 3,2.10-2 m. Penulisan ini tetap memiliki dua angka penting. Begitu pula dalam mm, l = 3,2.101 mm (2 angka penting). Dengan metode ini perubahan satuan tidak mengubah jumlah angka penting hasil pengukuran. 4. Analisa Angka Penting Seperti penjelasan di depan, angka penting merupakan semua angka yang diperoleh dalam pengukuran. Namun setelah dituliskan kadang-kadang jumlah angka pentingnya jadi rancu. Contohnya panjang suatu benda terukur 3,2 cm. Nilai panjang ini dapat ditulis 0,032 m atau 320 mm. Dari penulisan ini timbul pertanyaan; berapakah jumlah angka penting panjang benda tersebut? Untuk mengatasi kerancuan tersebut maka kalian perlu memperhatikan hal-hal penting berikut. 1. Penulisan angka penting bertujuan untuk mengetahui ketelitian suatu pengukuran. Contohnya pengukuran panjang benda di atas. l = 3,2 cm. Hasil ini menunjukkan bahwa pengukuran ini teliti hingga 1 desimal untuk centimeter (0,1 cm) dan angka pentingnya berjumlah 2. Misalnya lagi suatu pengukuran yang memperoleh t = 2,50 s. Hasil ini menunjukkan bahwa ketelitian alatnya sampai dua desimal (0,01 s) sehingga perlu menuliskan nilai 0 di belakang angka 5. Berarti memiliki 3 angka penting. 2. Penulisan hasil pengukuran sebaiknya menggunakan notasi ilmiah. Bentuk notasi ilmiah seperti berikut. a × 10n ……………………………………… (1.6) dengan : 1 < a < 10 n = bilangan bulat Penulisan notasi ilmiah ini akan lebih bermanfaat lagi jika dilakukan perubahan satuan. Misalnya pengukuran panjang benda di atas l = 3,2 cm = 0,032 m. Perubahan satuan ini sebaiknya dalam bentuk l = 3,2.10-2 m. Penulisan ini tetap memiliki dua angka penting. Begitu pula dalam mm, l = 3,2.101 mm (2 angka penting). Dengan metode ini perubahan satuan tidak mengubah jumlah angka penting hasil pengukuran. 3. Semua angka bukan nol merupakan angka penting. Contohnya suatu pengukuran tebal benda memperoleh nilai d = 35,28 cm berarti nilai tersebut memiliki 4 angka penting. 4. Untuk angka nol memiliki kriteria tersendiri yaitu: a). Angka nol diantara bukan nol termasuk angka penting b). Angka nol di sebelah kanan angka bukan nol termasuk angka penting kecuali ada keterangan tertentu. c). Angka nol di sebelah kiri angka bukan nol tidak termasuk angka penting. Contohnya: 3,023 gr = 4 angka penting 4,500 s = 3 angka penting 0,025 cm = 2 angka penting Mengapa kalian perlu mengetahui jumlah angka penting? Jumlah angka penting ini ternyata berkaitan erat dengan operasi angka penting. Operasi angka penting yang perlu dipelajari diantaranya penjumlahan, pengurangan, perkalian dan pembagian. Dalam setiap operasi ini perlu mengetahui beberapa aturan berikut. (1) Operasi dua angka pasti hasilnya angka pasti. (2) Operasi yang melibatkan angka taksiran hasilnya merupakan angka taksiran. (3) Hasil operasi angka penting hanya diperbolehkan mengandung satu angka taksiran. Jika diperoleh lebih dari dua angka taksiran maka harus dilakukan pembulatan. Angka 4 ke bawah dihilangkan dan angka 5 ke atas dibulatkan ke atas. a. Penjumlahan dan pengurangan Operasi penjumlahan dan pengurangan angka penting memiliki cara yang sama dengan operasi aljabar biasa. Hasilnya saja yang harus memenuhi aturan angka penting diantaranya hanya memiliki satu angka taksiran. Perhatikan contoh berikut. CONTOH 1.9 a. X = 25, 102 + 1,5 b. Y = 6,278 − 1,21 Tentukan nilai X dan Y! Penyelesaian a. Penjumlahan : 25, 1 0 2 1, 5 + 26, 6 0 2 16 Fisika SMA Kelas X Aktiflah Sifat pembagian angka penting sama dengan perkaliannya. Perhatikan pembagian bilangan berikut. x = 43,56 : 5,2 a. Berapakah jumlah angka penting bilangan hasil pembagian tersebut? Jelaskan bagaimana kalian dapat menentukannya? b. Buktikan jawaban kalian dengan membagi bilangan tersebut! _ Dengan pembulatan diperoleh X = 26,6 (hanya 1 angka taksiran). b. Pengurangan: 6, 2 7 8 1, 2 1 5, 0 6 8 Dengan pembulatan diperoleh Y = 5,07 (hanya 1 angka taksiran). b. Perkalian dan pembagian Bagaimana dengan operasi perkalian dan pembagian angka penting? Sudahkah kalian memahami? Ternyata aturannya juga sesuai dengan operasi penjumlahan dan pengurangan. Namun ada sifat yang menarik pada operasi ini. Coba kalian cermati jumlah angka penting pada perkalian berikut. 3 5, 1 (3 angka penting) 2, 6 (2 angka penting) 2 1, 0 6 7 0, 2 9 1, 2 6 Pembulatan : 9 1 (2 angka penting) Apakah yang dapat kalian cermati dari hasil operasi perkalian itu? Ternyata hasil akhir operasi perkalian itu memiliki jumlah angka penting yang sama dengan jumlah angka penting paling sedikit. Sifat perkalian ini akan berlaku pada operasi pembagian. Cobalah buktikan dengan membuat contoh sendiri. CONTOH 1.10 Sebuah hambatan terukur 120, 5 Ω. Jika ujung-ujung hambatan itu diberi beda potensial 1,5 volt maka berapakah kuat arus yang lewat? Penyelesaian R = 120,5 Ω (4 angka penting) V = 1,5 volt (2 angka penting) Sesuai hukum Ohm (masih ingat di SMP?) dapat diperoleh: I = = = 0,01245 A = 12,45 mA Pembulatan I = 12 mA (2 angka penting) |
You are subscribed to email updates from Chem-Is-Try.Org | Situs Kimia Indonesia | To stop receiving these emails, you may unsubscribe now. | Email delivery powered by Google |
Google Inc., 20 West Kinzie, Chicago IL USA 60610 |
Tidak ada komentar:
Posting Komentar